Merge pull request #2647 from zRzRzRzRzRzRzR/dev

更新即将废弃的启动内容
This commit is contained in:
zR 2024-01-13 13:00:58 +08:00 committed by GitHub
commit 0a37fe93b8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 59 additions and 54 deletions

View File

@ -262,6 +262,10 @@ def make_text_splitter(
text_splitter_module = importlib.import_module('langchain.text_splitter')
TextSplitter = getattr(text_splitter_module, "RecursiveCharacterTextSplitter")
text_splitter = TextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
# If you use SpacyTextSplitter you can use GPU to do split likes Issue #1287
# text_splitter._tokenizer.max_length = 37016792
# text_splitter._tokenizer.prefer_gpu()
return text_splitter

File diff suppressed because one or more lines are too long

View File

@ -6,9 +6,8 @@ import sys
from multiprocessing import Process
from datetime import datetime
from pprint import pprint
from langchain_core._api import deprecated
# 设置numexpr最大线程数默认为CPU核心数
try:
import numexpr
@ -33,15 +32,18 @@ from configs import (
HTTPX_DEFAULT_TIMEOUT,
)
from server.utils import (fschat_controller_address, fschat_model_worker_address,
fschat_openai_api_address, set_httpx_config, get_httpx_client,
get_model_worker_config, get_all_model_worker_configs,
fschat_openai_api_address, get_httpx_client, get_model_worker_config,
MakeFastAPIOffline, FastAPI, llm_device, embedding_device)
from server.knowledge_base.migrate import create_tables
import argparse
from typing import Tuple, List, Dict
from typing import List, Dict
from configs import VERSION
@deprecated(
since="0.3.0",
message="模型启动功能将于 Langchain-Chatchat 0.3.x重写,支持更多模式和加速启动0.2.x中相关功能将废弃",
removal="0.3.0")
def create_controller_app(
dispatch_method: str,
log_level: str = "INFO",
@ -88,7 +90,7 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
for k, v in kwargs.items():
setattr(args, k, v)
if worker_class := kwargs.get("langchain_model"): #Langchian支持的模型不用做操作
if worker_class := kwargs.get("langchain_model"): # Langchian支持的模型不用做操作
from fastchat.serve.base_model_worker import app
worker = ""
# 在线模型API
@ -107,12 +109,12 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
import fastchat.serve.vllm_worker
from fastchat.serve.vllm_worker import VLLMWorker, app, worker_id
from vllm import AsyncLLMEngine
from vllm.engine.arg_utils import AsyncEngineArgs,EngineArgs
from vllm.engine.arg_utils import AsyncEngineArgs
args.tokenizer = args.model_path # 如果tokenizer与model_path不一致在此处添加
args.tokenizer = args.model_path
args.tokenizer_mode = 'auto'
args.trust_remote_code= True
args.download_dir= None
args.trust_remote_code = True
args.download_dir = None
args.load_format = 'auto'
args.dtype = 'auto'
args.seed = 0
@ -122,13 +124,13 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
args.block_size = 16
args.swap_space = 4 # GiB
args.gpu_memory_utilization = 0.90
args.max_num_batched_tokens = None # 一个批次中的最大令牌tokens数量这个取决于你的显卡和大模型设置设置太大显存会不够
args.max_num_batched_tokens = None # 一个批次中的最大令牌tokens数量这个取决于你的显卡和大模型设置设置太大显存会不够
args.max_num_seqs = 256
args.disable_log_stats = False
args.conv_template = None
args.limit_worker_concurrency = 5
args.no_register = False
args.num_gpus = 1 # vllm worker的切分是tensor并行这里填写显卡的数量
args.num_gpus = 1 # vllm worker的切分是tensor并行这里填写显卡的数量
args.engine_use_ray = False
args.disable_log_requests = False
@ -138,10 +140,10 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
args.quantization = None
args.max_log_len = None
args.tokenizer_revision = None
# 0.2.2 vllm需要新加的参数
args.max_paddings = 256
if args.model_path:
args.model = args.model_path
if args.num_gpus > 1:
@ -154,16 +156,16 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
engine = AsyncLLMEngine.from_engine_args(engine_args)
worker = VLLMWorker(
controller_addr = args.controller_address,
worker_addr = args.worker_address,
worker_id = worker_id,
model_path = args.model_path,
model_names = args.model_names,
limit_worker_concurrency = args.limit_worker_concurrency,
no_register = args.no_register,
llm_engine = engine,
conv_template = args.conv_template,
)
controller_addr=args.controller_address,
worker_addr=args.worker_address,
worker_id=worker_id,
model_path=args.model_path,
model_names=args.model_names,
limit_worker_concurrency=args.limit_worker_concurrency,
no_register=args.no_register,
llm_engine=engine,
conv_template=args.conv_template,
)
sys.modules["fastchat.serve.vllm_worker"].engine = engine
sys.modules["fastchat.serve.vllm_worker"].worker = worker
sys.modules["fastchat.serve.vllm_worker"].logger.setLevel(log_level)
@ -171,7 +173,7 @@ def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI:
else:
from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker, worker_id
args.gpus = "0" # GPU的编号,如果有多个GPU可以设置为"0,1,2,3"
args.gpus = "0" # GPU的编号,如果有多个GPU可以设置为"0,1,2,3"
args.max_gpu_memory = "22GiB"
args.num_gpus = 1 # model worker的切分是model并行这里填写显卡的数量
@ -325,7 +327,7 @@ def run_controller(log_level: str = "INFO", started_event: mp.Event = None):
with get_httpx_client() as client:
r = client.post(worker_address + "/release",
json={"new_model_name": new_model_name, "keep_origin": keep_origin})
json={"new_model_name": new_model_name, "keep_origin": keep_origin})
if r.status_code != 200:
msg = f"failed to release model: {model_name}"
logger.error(msg)
@ -393,8 +395,8 @@ def run_model_worker(
# add interface to release and load model
@app.post("/release")
def release_model(
new_model_name: str = Body(None, description="释放后加载该模型"),
keep_origin: bool = Body(False, description="不释放原模型,加载新模型")
new_model_name: str = Body(None, description="释放后加载该模型"),
keep_origin: bool = Body(False, description="不释放原模型,加载新模型")
) -> Dict:
if keep_origin:
if new_model_name:
@ -450,13 +452,13 @@ def run_webui(started_event: mp.Event = None, run_mode: str = None):
port = WEBUI_SERVER["port"]
cmd = ["streamlit", "run", "webui.py",
"--server.address", host,
"--server.port", str(port),
"--theme.base", "light",
"--theme.primaryColor", "#165dff",
"--theme.secondaryBackgroundColor", "#f5f5f5",
"--theme.textColor", "#000000",
]
"--server.address", host,
"--server.port", str(port),
"--theme.base", "light",
"--theme.primaryColor", "#165dff",
"--theme.secondaryBackgroundColor", "#f5f5f5",
"--theme.textColor", "#000000",
]
if run_mode == "lite":
cmd += [
"--",
@ -605,8 +607,10 @@ async def start_main_server():
Python 3.9 has `signal.strsignal(signalnum)` so this closure would not be needed.
Also, 3.8 includes `signal.valid_signals()` that can be used to create a mapping for the same purpose.
"""
def f(signal_received, frame):
raise KeyboardInterrupt(f"{signalname} received")
return f
# This will be inherited by the child process if it is forked (not spawned)
@ -701,8 +705,8 @@ async def start_main_server():
for model_name in args.model_name:
config = get_model_worker_config(model_name)
if (config.get("online_api")
and config.get("worker_class")
and model_name in FSCHAT_MODEL_WORKERS):
and config.get("worker_class")
and model_name in FSCHAT_MODEL_WORKERS):
e = manager.Event()
model_worker_started.append(e)
process = Process(
@ -742,12 +746,12 @@ async def start_main_server():
else:
try:
# 保证任务收到SIGINT后能够正常退出
if p:= processes.get("controller"):
if p := processes.get("controller"):
p.start()
p.name = f"{p.name} ({p.pid})"
controller_started.wait() # 等待controller启动完成
controller_started.wait() # 等待controller启动完成
if p:= processes.get("openai_api"):
if p := processes.get("openai_api"):
p.start()
p.name = f"{p.name} ({p.pid})"
@ -763,24 +767,24 @@ async def start_main_server():
for e in model_worker_started:
e.wait()
if p:= processes.get("api"):
if p := processes.get("api"):
p.start()
p.name = f"{p.name} ({p.pid})"
api_started.wait() # 等待api.py启动完成
api_started.wait() # 等待api.py启动完成
if p:= processes.get("webui"):
if p := processes.get("webui"):
p.start()
p.name = f"{p.name} ({p.pid})"
webui_started.wait() # 等待webui.py启动完成
webui_started.wait() # 等待webui.py启动完成
dump_server_info(after_start=True, args=args)
while True:
cmd = queue.get() # 收到切换模型的消息
cmd = queue.get() # 收到切换模型的消息
e = manager.Event()
if isinstance(cmd, list):
model_name, cmd, new_model_name = cmd
if cmd == "start": # 运行新模型
if cmd == "start": # 运行新模型
logger.info(f"准备启动新模型进程:{new_model_name}")
process = Process(
target=run_model_worker,
@ -831,7 +835,6 @@ async def start_main_server():
else:
logger.error(f"未找到模型进程:{model_name}")
# for process in processes.get("model_worker", {}).values():
# process.join()
# for process in processes.get("online_api", {}).values():
@ -866,10 +869,9 @@ async def start_main_server():
for p in processes.values():
logger.info("Process status: %s", p)
if __name__ == "__main__":
# 确保数据库表被创建
create_tables()
if __name__ == "__main__":
create_tables()
if sys.version_info < (3, 10):
loop = asyncio.get_event_loop()
else:
@ -879,16 +881,15 @@ if __name__ == "__main__":
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# 同步调用协程代码
loop.run_until_complete(start_main_server())
loop.run_until_complete(start_main_server())
# 服务启动后接口调用示例:
# import openai
# openai.api_key = "EMPTY" # Not support yet
# openai.api_base = "http://localhost:8888/v1"
# model = "chatglm2-6b"
# model = "chatglm3-6b"
# # create a chat completion
# completion = openai.ChatCompletion.create(