FileChat/rag_chat.py
2024-08-27 21:44:25 +08:00

43 lines
1.3 KiB
Python

from zhipuai import ZhipuAI
client = ZhipuAI(api_key="c7e37f4df18095500882f7680e4496a9.63jqS9iptluarKXv") # 请填写您自己的APIKey
result = client.knowledge.create(
embedding_id=3,
name="knowledge name",
description="knowledge description"
)
knowledge_id = result.id
# print(result.id)
resp = client.knowledge.document.create(
file=open("xxx.xlsx", "rb"),
purpose="retrieval",
knowledge_id=knowledge_id,
sentence_size=202,
custom_separator=["\n"]
)
print(resp)
response = client.chat.completions.create(
model="glm-4", # 填写需要调用的模型名称
messages=[
{"role": "user", "content": "你好!你叫什么名字"},
],
tools=[
{
"type": "retrieval",
"retrieval": {
"knowledge_id": "your knowledge id",
"prompt_template": "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就用自身知识回答并且告诉用户该信息不是来自文档。\n不要复述问题,直接开始回答。"
}
}
],
stream=True,
)
for chunk in response:
print(chunk.choices[0].delta)